

First results on n=1 and n=2 ELM control on DIII-D & progress on JET

Richard Buttery,

with M T Aldan, M Fenstermacher, S J Fielding, D F Howell, R Koslowski, G Jackson, M Jakubowski, C Lasnier, Y Liang, R Moyer, T Osbourne, M Schaffer, O Schmitz, B Unterberg, and JET-EFDA, DIII-D and COMPASS-D contributors

Work conducted under the European Fusion Development Agreement and jointly funded by EURATOM, the UK EPSRC and US DOE.

Motivation

- DIII-D made excellent progress with type I ELM control using n=3 fields
 - Seems to be consistent with an edge ergodisation process
- But a number of questions still arise:
 - What are the physics mechanisms?
 - What levels of ergodisation is required and where?
 - How to broaden resonances and put on a more robust footing?
- Studies with n=1 and n=2 fields may open up parameter space and also address key physics questions
- *ITER*...

Contents

EΑ

Background

- Early trials on COMPASS-D and JET highlights

Progress on JET

- New results with higher shape, AT and n=2

DIII-D experiments

n=1,2 control of ELMs

- Modelling studies to show what's possible

R J Buttery

- n=1 results with pure I and I+C coils
- n=2 complete ELM suppression?

Early COMPASS-D n=1 ELM results

m/n Br(G/kA)

5/1

1.0

<u>n=1:</u>

JET RMP fields

- Plasma braking
- Seeding of locked modes

<u>n=2:</u>

- Good edge ergodisation
- Small influence on core plasma

[Liang, EPS 2007, PPCF 2007, Koslowski EPS 2007]

n=1,2 control of ELMs

R J Buttery

JET: *n*=1 field results

without EFCCs

with **EFCCs**

[Liang, EPS 2007, PPCF 2007, Koslowski EPS 2007]

n=1,2 control of ELMs

R J Buttery

JET: ELM T_e perturbation smaller with RMP

[Liang, EPS 2007, PPCF 2007, Koslowski EPS 2007]

n=1,2 control of ELMs

R J Buttery

JET: Result extended to high shape...

JET: ...and applied in high β AT plasmas

JET: First tests of n=2 EFCCs in high β scenario

 β_{N} ~no-wall limit:

- See 'usual' effect on ELMs, ne, Te
- Though weak as just first test with 8 turns

More in 2008...

n=1,2 control of ELMs

R J Buttery

JET: q₉₅ range - locked modes are an issue, but operational window exists

DIII-D brings unique capability to this field

Interplay of I coils and C coils allows us to change balance of field harmonics:

'Proof-of-principal' type scans to see what these do...

AEA n=1,2 control of ELMs R J Buttery

DIII-D Modelling of I and C coil n=1 fields

- I fields introduce strong edge components:
 - -though Chirikov only just >1
- C fields strongly core resonant:
 - Can use to remove I coil core resonances

n=1,2 control of ELMs

R J Buttery

Field scans possible on DIII-D

IKAEA n=1,2 control of ELMs

R J Buttery

Combining Cs and Is (180 phasing)

- Cancelling core harmonics leads to strong nonresonant field:
- <u>Or</u> different C phase can kill non-resonant field and enhance edge fields:

KAEA n=1,2 control of ELMs

R J Buttery

Pure I field tried first in q₉₅ ramps:

<u>q₉₅ ramp 4.7→3.5:</u>

- Dα amplitude reduced
- ELM frequency increased
- Particular affect around 3200ms, q₉₅~4.25

IKAEA n=1,2 control of ELMs

R J Buttery

ELM frequency clearly rises

KAEA n=1,2 control of ELMs

R J Buttery

Good shot in n=1 -> I-coil + C-coil as EFC

ELM energy does fall, but in proportion to pedestal

AEA n=1,2 control of ELMs

R J Buttery

n=1 extended to higher amplitudes by removing core harmonics with C coils

- Increased ELM frequency relative to reference
- But not more effective
 - Error correction not that simple!
 - Eg this meeting!
 - Locked mode is the problem

KAEA n=1,2 control of ELMs

R J Buttery

n=2 fields...

UKAEA n=1,2 control of ELMs

R J Buttery

Modelling of n=2 fields also show promise...

Promising new ELM suppression technique identified with n=2 fields

- Broad resonance at low q_{95}
- Clear density pump out effect
- But confinement fall
- Worthy of further exploration?

ΕA

Comparison of resonant regions as q scans varied

• Best effect at q₉₅~3.4 (||)

 Other (|||) higher q 'resonances' less consistent

 Variation in L-H threshold need analysis

> - impacting behaviour?

IR shows possible effect of strike splitting

IKAEA n=1,2 control of ELMs

R J Buttery

Good shot in n=2 -> I-coil with highest amplitude

Conclusions

- n=1 and n=2 fields can have significant effects on ELMs
- May offer potential for broader q₉₅ resonance and more general applicability than n=3? – works well on JET
- But n=1 effect on DIII-D not as strong as JET & limited by locked modes...
 - C-coil correction gives x2 improvement in LM threshold but demonstrates vacuum resonant model not whole story
 - Further check with "optimal" pure I coil phasing for ELMs & EF correction worth pursuing
- Does n=1 on JET act through rotation change?
- DIII-D proof of principal n=2 complete suppression is a new world first, and needs to be explored further...*

*apologies for 'usual' hard sell line!

UKAEA n=1,2 control of ELMs

R J Buttery

UKAEA n=1,2 control of ELMs

R J Buttery

First comparison pair shows an effect

UKAEA n=1,2 control of ELMs

R J Buttery

Larger fields progressively more effect

IKAEA n=1,2 control of ELMs

R J Buttery

First tests of n=1 in low shape configuration

#67954; I_{p} = 1.6 MA; B_{t} = 1.84 T; q_{95} ~ 4.0; δ ~ 0.3

KAEA n=1,2 control of ELMs

R J Buttery

Reduced limiter heat loading

 \overline{q}_{95} scan

B_t=1.84 T; Plasma configuration: C_SFE_LT

IKAEA n=1,2 control of ELMs

R J Buttery

n=1 extended to higher amplitudes by removing core harmonics with C coils

IKAEA n=1,2 control of ELMs

R J Buttery

COMPASS-D RMPs configuration

AEA n=1,2 control of ELMs

R J Buttery

Type III ELM control in COMPASS-D

- No 2/1island formed
- 10% fall in stored energy with RMP
- Larger fields led to H-L
- Possible evidence for a threshold in required current

Influence in ELM-free H-mode in COMPASS-D

IKAEA n=1,2 control of ELMs

R J Buttery